China best CZPT SWC-Bh Types Cardan Shaft for Paper Machinery

Product Description

Huading SWC-BH types cardan shaft for paper machinery

SWC-BH types Cardan shaft is a kind of the most commonly used with the characteristics of its structure can not in the same axis or axis angle or larger axial movement of 2 large equiangular continuous rotary speed, and reliably transfer torque and motion.

It can be widely used in paper machinery, metallurgy, lifting, transportation, mining, petroleum, shipbuilding, coal, rubber, and other heavy machinery industry machinery shaft in the transmission torque.

♦Basic Parameter And Main Dimension

 Model   Tn
kN • m

T.
kN • m

p
(.)
LS
mm
Lmin                           Size
                           mm
I kg. m2       m
      kg
Di
js11
d2
H7
Da Lm n-d k t b
h9
g Lmin 100mm Lmin 100mm
SWC58BH 58 0.15 0.075 ≤22 35 325 47 30 38 35 4-5 3.5 1.5 2.2
SWC65BH 65 0.25 0.125 ≤22 40 360 52 35 42 46 4-6 4.5 1.7 3.0
SWC75BH 75 0.50 0.25 ≤22 40 395 62 42 50 58 6-6 5.5 2.0 5.0
SWC90BH 90 1.0 0.50 ≤22 45 435 74.5 47 54 58 4-8 6.0 2.5 6.6
SWC100BH 100 1.5 0.75 ≤25 55 390 84 57 60 58 6-9 7 2.5 0.0044 0.00019 6.1 0.35
SWC120BH 120 2.5 1.25 ≤25 80 485 102 75 70 68 8-11 8 2.5 0.5719 0.00044 10.8 0.55
SWC150BH 150 5 2.5 ≤25 80 590 13.0 90 89 80 8-13 10 3.0 0.0423 0.00157 24.5 0.85
SWC160BH 160 10 5 ≤25 80 660 137 100 95 110 8-15 15 3.0 20 12 0.1450 0.0060 68 1.72
SWC180BH 180 20 10 ≤25 100 810 155 105 114 130 8-17 17 5.0 24 14 0.1750 0.0070 70 2.8
SWC200BH 200 32 16 ≤15 110 860 170 120 127 135 8-17 19 5.0 28 16 0.3100 0.0130 86 3.6
SWC225BH 225 40 20 ≤15 140 920 196 135 152 120 8-17 20 5.0 32 9.0 0.5380 0.5714 122 4.9
SWC250BH 250 63 31.5 ≤15 140 1035 218 150 168 140 8-19 25 6.0 40 12.5 0.9660 0.5717 172 5.3
SWC285BH 285 90 45 ≤15 140 1190 245 170 194 160 8-21 27 7.0 40 15.0 2.0110 0.571 263 6.3
SWC315BH 315 125 63 ≤15 140 1315 280 185 219 180 10-23 32 8.0 40 15.0 3.6050 0.571 382 8.0
SWC350BH 350 180 90 ≤15 150 1410 310 210 267 194 10-23 35 8.0 50 16.0 7.571 0.2219 582 15.0
SWC390BH 390 250 125 ≤15 170 1590 345 235 267 215 10-25 40 8.0 70 18.0 12.164 0.2219 738 15.0
SWC440BH 440 355 180 ≤15 190 1875 390 255 325 260 16-28 42 10 80 20.0 21.420 0.4744 1190 21.7
SWC490BH 490 500 250 ≤15 190 1985 435 275 325 270 16-31 47 12 90 22.5 32.860 0.4744 1452 21.7
SWC550BH 550 710 355 ≤15 240 2300 492 320 426 305 16-31 50 12 100 22.5 68.920 1.3570 2380 34

·Marking Example:
  SWC 350BH Standard telescopic welded Cardan shaft, Length=1610mm
  SWC 350BH*1610cardan shaft JB5513-91
·Note:
1. Tf-Torque allowed by fatigue strength under variable load

2. Lmin-Minimum length after shortening
3. L-Installation length as required

♦Product Show

♦Other Products List

Transmission Machinery 
Parts Name
Model
Universal Coupling WS, WSD, WSP
Cardan Shaft SWC,SWP,SWZ
Tooth Coupling CL,CLZ,GCLD,GIICL,
GICL,NGCL,GGCL,GCLK
Disc Coupling JMI,JJ,JMII, JMIIJ
High Flexible Coupling LM
Chain Coupling GL
Jaw Coupling LT
Grid Coupling JS

Our Company
Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. To perfect our service, we provide products of good quality at a reasonable price.

Welcome to customize products from our factory and please provide your design drawings or contact us if you need other requirements.

Our Services
1. Design Services
Our design team has experience in Cardan shafts relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2. Product Services
raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→Packing→Shipping

3. Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4. Research & Development
We usually research the new needs of the market and develop new models when there are new cars in the market.

5. Quality Control
Every step should be a particular test by Professional Staff according to the standard of ISO9001 and TS16949.

FAQ
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing
various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all customers with customized PDF or AI format artwork.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually, we have an excellent price principle, when you make the bulk order the cost of the sample will be deducted.

Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 6: What is the MOQ?
A: Usually our MOQ is 1pcs.

Q 7: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 8: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.

Q 9: What’s your payment?
A:1) T/T. 

Contact Us

Web: huadingcoupling
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China
 

Standard Or Nonstandard: Standard
Shaft Hole: as Your Requirement
Torque: as Your Requirement
Samples:
US$ 500/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

cardan shaft

How do cardan shafts handle variations in length and connection methods?

Cardan shafts are designed to handle variations in length and connection methods, allowing for flexibility in their installation and use. These shafts incorporate several features and mechanisms that enable them to accommodate different lengths and connection methods. Let’s explore how cardan shafts handle these variations:

1. Telescopic Design:

– Cardan shafts often employ a telescopic design, which consists of multiple sections that can slide in and out. These sections allow for adjustment of the overall length of the shaft to accommodate variations in distance between the driving and driven components. By telescoping the shaft, it can be extended or retracted as needed, ensuring proper alignment and power transmission.

2. Slip Yokes:

– Slip yokes are components used in cardan shafts that allow for axial movement. They are typically located at one or both ends of the telescopic sections. Slip yokes provide a sliding connection that compensates for changes in length and helps to maintain proper alignment between the driving and driven components. When the length of the shaft needs to change, the slip yokes slide along the shaft, allowing for the necessary adjustment without disrupting power transmission.

3. Flange Connections:

– Cardan shafts can utilize flange connections to attach the shaft to the driving and driven components. Flange connections provide a secure and rigid connection, ensuring efficient power transfer. The flanges are typically bolted or welded to the shaft and the corresponding components, such as the transmission, differential, or axle. Flange connections allow for easy installation and removal of the cardan shaft while maintaining stability and alignment.

4. Universal Joints:

– Universal joints, or U-joints, are essential components in cardan shafts that allow for angular misalignment between the driving and driven components. They consist of a cross-shaped yoke and needle bearings at each end. The universal joints provide flexibility and compensate for variations in angle and alignment. This flexibility enables cardan shafts to handle different connection methods, such as non-parallel or offset connections, while maintaining efficient power transmission.

5. Splined Connections:

– Some cardan shafts employ splined connections, where the shaft and the driving/driven components have matching splined profiles. Splined connections provide a precise and secure connection that allows for torque transmission while accommodating length variations. The splined profiles enable the shaft to slide in and out, adjusting the length as needed while maintaining a positive connection.

6. Customization and Adaptable Designs:

– Cardan shafts can be customized and designed to handle specific variations in length and connection methods based on the requirements of the application. Manufacturers offer a range of cardan shaft options with different lengths, sizes, and connection configurations. By collaborating with cardan shaft manufacturers and suppliers, engineers can select or design shafts that match the specific needs of their systems, ensuring optimal performance and compatibility.

In summary, cardan shafts handle variations in length and connection methods through telescopic designs, slip yokes, flange connections, universal joints, splined connections, and customizable designs. These features allow the shafts to adjust their length, compensate for misalignment, and establish secure connections while maintaining efficient power transmission. By incorporating these mechanisms, cardan shafts offer flexibility and adaptability in various applications where length variations and different connection methods are encountered.

cardan shaft

Can you provide real-world examples of vehicles and machinery that use cardan shafts?

Cardan shafts are widely used in various vehicles and machinery across different industries. They are employed in applications where torque transmission, power distribution, and flexibility are crucial. Here are some real-world examples of vehicles and machinery that utilize cardan shafts:

1. Automotive Vehicles:

– Cars, trucks, and SUVs: Cardan shafts are commonly found in rear-wheel drive (RWD) and four-wheel drive (4WD) vehicles. They connect the transmission or transfer case to the rear differential or front differential, respectively, enabling torque transmission to the wheels. Examples include sedans, pickup trucks, and SUVs like Jeep Wrangler, Ford F-150, and Toyota Land Cruiser.

– Buses and commercial vehicles: Cardan shafts are used in buses and commercial vehicles that have rear-wheel drive or all-wheel drive configurations. They transmit torque from the engine or transmission to the rear axle or multiple axles. Examples include city buses, coaches, and delivery trucks.

2. Off-Road and Utility Vehicles:

– Off-road vehicles: Many off-road vehicles, such as off-road trucks, SUVs, and all-terrain vehicles (ATVs) utilize cardan shafts. These shafts provide the necessary torque transfer and power distribution to all wheels for improved traction and off-road capabilities. Examples include the Land Rover Defender, Jeep Wrangler Rubicon, and Yamaha Grizzly ATV.

– Agricultural machinery: Farm equipment like tractors and combine harvesters often employ cardan shafts to transmit power from the engine to various attachments such as mowers, balers, and harvesters. The shafts enable efficient power distribution and flexibility for different agricultural tasks.

– Construction and mining machinery: Equipment used in construction and mining applications, such as excavators, loaders, and bulldozers, utilize cardan shafts to transfer power from the engine or transmission to the different components of the machinery. These shafts enable power distribution and torque transmission to various attachments, allowing for efficient operation in demanding environments.

3. Industrial Machinery:

– Manufacturing machinery: Cardan shafts are used in industrial equipment such as conveyors, mixers, and rotary equipment. They provide torque transmission and power distribution within the machinery, enabling efficient operation and movement of materials.

– Paper and pulp industry: Cardan shafts are employed in paper and pulp processing machinery, including paper machines and pulp digesters. These shafts facilitate power transmission and torque distribution to various parts of the machinery, contributing to smooth operation and high productivity.

– Steel and metal processing machinery: Equipment used in steel mills and metal processing facilities, such as rolling mills, extruders, and coil winding machines, often utilize cardan shafts. These shafts enable power transmission and torque distribution to the different components involved in metal forming, shaping, and processing.

These examples represent just a few of the many applications where cardan shafts are employed. Their versatility, durability, and ability to handle torque transmission and power distribution make them essential components in a wide range of vehicles and machinery across industries.

cardan shaft

How do cardan shafts contribute to power transmission and motion in various applications?

Cardan shafts, also known as propeller shafts or drive shafts, play a significant role in power transmission and motion in various applications. They are widely used in automotive, industrial, and marine sectors to transfer torque and rotational power between non-aligned components. Cardan shafts offer several benefits that contribute to efficient power transmission and enable smooth motion in different applications. Here’s a detailed look at how cardan shafts contribute to power transmission and motion:

1. Torque Transmission:

– Cardan shafts are designed to transmit torque from a driving source, such as an engine or motor, to a driven component, such as wheels, propellers, or machinery. They can handle high torque loads and transfer power over long distances. By connecting the driving and driven components, cardan shafts ensure the efficient transmission of rotational power, enabling the motion of vehicles, machinery, or equipment.

2. Angular Misalignment Compensation:

– One of the key advantages of cardan shafts is their ability to accommodate angular misalignment between the driving and driven components. The universal joints present in cardan shafts allow for flexibility and articulation, compensating for variations in the relative positions of the components. This flexibility is crucial in applications where the driving and driven components may not be perfectly aligned, such as vehicles with suspension movement or machinery with adjustable parts. The cardan shaft’s universal joints enable the transmission of torque even when there are angular deviations, ensuring smooth power transfer.

3. Axial Misalignment Compensation:

– In addition to angular misalignment compensation, cardan shafts can also accommodate axial misalignment between the driving and driven components. Axial misalignment refers to the displacement along the axis of the shafts. The design of cardan shafts with telescopic sections or sliding splines allows for axial movement, enabling the shaft to adjust its length to compensate for variations in the distance between the components. This feature is particularly useful in applications where the distance between the driving and driven components can change, such as vehicles with adjustable wheelbases or machinery with variable attachment points.

4. Vibration Damping:

– Cardan shafts contribute to vibration damping in various applications. The flexibility provided by the universal joints helps absorb and dampen vibrations generated during operation. By allowing slight angular deflection and accommodating misalignment, cardan shafts help reduce the transmission of vibrations from the driving source to the driven component. This vibration damping feature improves the overall smoothness of operation, enhances ride comfort in vehicles, and reduces stress on machinery.

5. Balancing:

– To ensure smooth and efficient operation, cardan shafts are carefully balanced. Even minor imbalances in rotational components can result in vibration, noise, and reduced performance. Balancing the cardan shaft minimizes these issues by redistributing mass along the shaft, eliminating or minimizing vibrations caused by centrifugal forces. Proper balancing improves the overall stability, reduces wear on bearings and other components, and extends the lifespan of the shaft and associated equipment.

6. Safety Features:

– Cardan shafts often incorporate safety features to protect against mechanical failures. For example, some cardan shafts have guards or shielding to prevent contact with rotating components, reducing the risk of accidents or injuries. In applications where excessive forces or torques can occur, cardan shafts may include safety mechanisms such as shear pins or torque limiters. These features are designed to protect the shaft and other components from damage by shearing or disengaging in case of overload or excessive torque.

7. Versatility in Applications:

– Cardan shafts offer versatility in their applications. They are widely used in various industries, including automotive, agriculture, mining, marine, and industrial sectors. In automotive applications, cardan shafts transmit power from the engine to the wheels, enabling vehicle propulsion. In industrial machinery, they transfer power between motors and driven components such as conveyors, pumps, or generators. In marine applications, cardan shafts transmit power from the engine to propellers, enabling ship propulsion. The versatility of cardan shafts makes them suitable for a wide range of power transmission needs in different environments.

In summary, cardan shafts are essential components that contribute to efficient power transmission and motion in various applications. Their ability to accommodate angular and axial misalignment, dampen vibrations, balance rotational components, and incorporate safety features enables smooth and reliable operation in vehicles, machinery, and equipment. The versatility of cardan shafts makes them a valuable solution for transmitting torque and rotational power in diverse industries and environments.

China best CZPT SWC-Bh Types Cardan Shaft for Paper Machinery  China best CZPT SWC-Bh Types Cardan Shaft for Paper Machinery
editor by CX 2023-10-31