China wholesaler CZPT SWC-CH Type Cardan Drive Shaft for Rolling Mill

Product Description

Huading SWC Type Cardan Drive Shaft

No machine element other than a Cardan shaft allows power transmission of torque between spatially offset driving and driven shafts whose position can be changed during operation.
Spatial angular motion and changes in axial length are ensured by advanced constructional elements.
Thus, Cardan shafts have become an indispensable transmission component in industrial production.
 
Typical applications: Steel mill machinery, paper mill machinery, levelers, marine propulsion, pumps, amusement rides, wastewater treatment.
 
Advantage:
1. Low life-cycle costs and long service life;
2. Increase productivity;
3. Professional and innovative solutions;
4. Reduce carbon dioxide emissions and environmental protection;
5. High torque capacity even at large deflection angles;
6. Easy to move and run smoothly;

♦SWC  CH Cardan Shaft Basic Parameter And Main Dimension:

Model Tactical diameter
D
mm
Nominal torque
Tn
kN·m
Fatigue
torque
Tf
kN·m
Axis rotation
β
(°)
Stretch
length
LS
mm
Lmin Size
mm
Rotary inertia
kg.m2
Weight
kg
D1
js11
D2
H7
D3 Lm n-d k t b
h9
g Lmin
 
Increase
100mm
Lmin Increase
100mm
SWC180CH1 180 20 10 ≤25 200 925 155 105 114 110 8-17 17 5 24 7 0.181 0.0070 74 2.8
SWC180CH2 700 1425 0.216 104
SWC200CH1 200 32 16 ≤15 80 720 170 120 127 135 8-17 19 5 28 16 0.276 0.0130 76 3.6
SWC200CH2 50 690 0.261 74
SWC225CH1 225 40 20 ≤15 85 710 196 135 152 120 8-17 20 5 32 9.0 0.415 0.5714 95 4.9
SWC225CH2 70 640 0.397 92
SWC250CH1 250 63 31.5 ≤15 100 795 218 150 168 140 8-19 25 6 40 12.5 0.900 0.5717 148 5.3
SWC250CH2 70 735 0.885 136
SWC285CH1 285 90 45 ≤15 120 950 245 170 194 160 8-21 27 7 40 15.0 1.826 0.571 229 6.3
SWC285CH2 80 880 1.801 221
SWC315CH1 315 125 63 ≤15 130 1070 280 185 219 180 10-23 32 8 40 15.0 3.331 0.571 346 8.0
SWC315CH2 90 980 3.163 334
SWC350CH1 350 180 90 ≤15 140 1170 310 210 267 194 10-23 35 8 50 16.0 6.215 0.2219 508 15.0
SWC350CH2 90 1070 5.824 485
SWC390CH1 390 250 125 ≤15 150 1300 345 235 267 215 10-25 40 8 70 18.0 11.125 0.2219 655 15.0
SWC390CH2 90 1200 10.763 600
SWC440CH1 440 355 180 ≤15 400 2110 390 255 325 260 16-28 42 10 80 20 22.540 0.4744 1312 21.7
SWC440CH2 800 2510 24.430 1537
SWC490CH1 490 500 250 ≤15 400 2220 435 275 325 270 16-31 47 12 90 22.5 33.970 0.4744 1554 21.7
SWC490CH2 800 2620 35.870 1779
SWC550CH1 550 710 355 ≤15 500 2585 492 320 426 305 16-31 50 12 100 22.5 72.790 1.3570 2585 34.0
SWC550CH2 1000 3085 79.570 3045

·Notice:1.Tf-Torque allowed by fatigue strength under variable load
            2. Lmin-Minimum length after shortening
            3. L-Installation length as required

 

 

Universal Joint Shafts Features:

1. We have a very complete supply chain system, and can provide over 1000 different spare parts. 

2 . Elastomer connecting in the middle;

3. Can absorb vibration, compensates for radial, axial and angular deviation;

4. Oil resistance and electrical insulation;

5. Have the same characteristic of clockwise and anticlockwise rotation;

 

Cardan Shaft Types:

We can supply you with SWP, SWC, WSD, and WS universal coupling as follows:

Welded shaft type with length compensation/ expansion joint

Short type with length compensation/ expansion joint

Short type without length compensation/ expansion joint

Long type without length compensation/ expansion joint

Double flange with length compensation/ expansion joint

Long type with big length compensation / big expansion joint

Super Short type with length compensation/ expansion joint

 

 

Our Services:

1. Design Services
Our design team has experience in Universal Joint shafts relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2. Product Services
Raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→Packing→Shipping

3. Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4. Research & Development
We usually research the new needs of the market and develop new models when there are new cars in the market.

5. Quality Control
Every step should be a special test by Professional Staff according to the standard of ISO9001 and TS16949.

 

FAQ
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing
various series of Cardan shafts.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artwork in PDF or AI format.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually, we have an excellent price principle, when you make the bulk order the cost of the sample will be deducted.

Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 6: What is the MOQ?
A: Usually our MOQ is 1pcs.

Q 7: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 8: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.

Q 9: What’s your payment?
A:1) T/T. 

Welcome to contact us for more detailed information about Cardan shafts! 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Nonstandard
Shaft Hole: as Your Requirement
Torque: as Your Requirement
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

cardan shaft

Are there any limitations or disadvantages associated with cardan shaft systems?

While cardan shaft systems offer numerous advantages, they also have some limitations and disadvantages that should be considered. Let’s explore these limitations in detail:

1. Angular Misalignment:

– Cardan shafts are designed to accommodate angular misalignment between the driving and driven components. However, excessive misalignment can lead to increased wear, vibration, and decreased efficiency. If the misalignment exceeds the recommended limits, it can put additional stress on the universal joints and other components, reducing the lifespan of the shaft and potentially causing mechanical failures.

2. Noise and Vibration:

– Cardan shaft systems can introduce noise and vibration into the equipment or vehicle. The universal joints and slip yokes in the shaft assembly can generate vibrations as they rotate, especially at high speeds. These vibrations can contribute to increased noise levels, potentially causing discomfort for passengers or affecting the performance of sensitive equipment. Proper balancing and maintenance of the shaft can help mitigate these effects, but they may still be present to some extent.

3. Maintenance and Lubrication:

– Cardan shaft systems require regular maintenance and lubrication to ensure optimal performance and longevity. The universal joints and slip yokes need to be properly lubricated to minimize friction and wear. If maintenance is neglected, the joints can wear out quickly, leading to increased vibration, noise, and potential failure. Regular inspections and lubrication are necessary to maintain the efficiency and reliability of cardan shaft systems.

4. Limited Flexibility in High-Speed Applications:

– Cardan shafts have limitations when it comes to high-speed applications. At high rotational speeds, the centrifugal forces acting on the rotating components can cause significant stress on the shaft and universal joints. This can result in increased wear, reduced lifespan, and potential failure. In such cases, alternative power transmission systems such as constant-velocity (CV) joints or direct drives may be more suitable.

5. Space and Weight Constraints:

– Cardan shaft systems require sufficient space for installation due to their length and telescopic design. In applications with limited space constraints, it may be challenging to accommodate the full length of the shaft, or modifications may be necessary to ensure proper fit. Additionally, the weight of the shaft can be a consideration, especially in applications where weight reduction is crucial. In such cases, alternative lightweight materials or drive systems may be more appropriate.

6. Cost:

– Cardan shaft systems can be relatively costly compared to other power transmission options. The complexity of their design, the need for customization, and the use of multiple components contribute to higher manufacturing and installation costs. However, it’s important to consider the overall benefits and performance of cardan shaft systems when evaluating their cost-effectiveness for specific applications.

7. Limited Misalignment Compensation:

– While cardan shafts can accommodate angular misalignment, they have limitations when it comes to compensating for other types of misalignment, such as parallel offset or axial displacement. In applications that require significant compensation for these types of misalignment, alternative power transmission systems with more advanced flexibility, such as flexible couplings or CV joints, may be more suitable.

Despite these limitations, cardan shaft systems remain widely used and offer numerous advantages in various applications. By understanding these limitations and considering the specific requirements of the application, engineers can make informed decisions regarding the suitability of cardan shaft systems or explore alternative power transmission options.

cardan shaft

What safety precautions should be followed when working with cardan shafts?

Working with cardan shafts requires adherence to certain safety precautions to prevent accidents, injuries, and damage to equipment. Whether during installation, maintenance, or repair, it is essential to follow these safety guidelines:

1. Personal Protective Equipment (PPE):

– Always wear appropriate personal protective equipment, including safety glasses, gloves, and protective clothing. PPE helps protect against potential hazards such as flying debris, sharp edges, or contact with lubricants or chemicals.

2. Training and Familiarity:

– Ensure that personnel working with cardan shafts are adequately trained and familiar with the equipment and procedures involved. They should understand the potential hazards, safe operating practices, and emergency procedures.

3. Lockout/Tagout Procedures:

– Before working on cardan shafts, follow proper lockout/tagout procedures to isolate and de-energize the equipment. This prevents accidental activation or movement of the shaft while maintenance or repair activities are being performed.

4. Secure the Equipment:

– Before starting any work on the cardan shaft, ensure that the equipment or vehicle is securely supported and immobilized. This prevents unexpected movement or rotation of the shaft, reducing the risk of entanglement or injury.

5. Ventilation:

– If working in enclosed spaces or areas with poor ventilation, ensure adequate ventilation or use appropriate respiratory protective equipment to avoid inhalation of harmful fumes, gases, or dust particles.

6. Proper Lifting Techniques:

– When handling heavy cardan shafts or components, use proper lifting techniques to avoid strains or injuries. Employ lifting equipment, such as cranes or hoists, where necessary, and ensure the load capacity is not exceeded.

7. Inspection and Maintenance:

– Regularly inspect the condition of the cardan shaft, including universal joints, slip yokes, and other components. Look for signs of wear, damage, or misalignment. Perform routine maintenance and lubrication as recommended by the manufacturer to ensure safe and efficient operation.

8. Avoid Exceeding Design Limits:

– Operate the cardan shaft within its specified design limits, including torque capacity, speed, and misalignment angles. Exceeding these limits can lead to premature wear, mechanical failure, and safety hazards.

9. Proper Disposal of Used Parts and Lubricants:

– Dispose of used parts, lubricants, and other waste materials in accordance with local regulations and environmental best practices. Follow proper disposal procedures to prevent pollution and potential harm to the environment.

10. Emergency Response:

– Be familiar with emergency response procedures, including first aid, fire prevention, and evacuation plans. Maintain access to emergency contact information and necessary safety equipment, such as fire extinguishers, in the vicinity of the work area.

It is important to note that the above safety precautions serve as general guidelines. Always refer to specific safety guidelines provided by the manufacturer of the cardan shaft or equipment for any additional precautions or recommendations.

By following these safety precautions, individuals working with cardan shafts can minimize the risks associated with their operation and ensure a safe working environment.

cardan shaft

What benefits do cardan shafts offer for different types of vehicles and equipment?

Cardan shafts, also known as propeller shafts or drive shafts, offer numerous benefits for different types of vehicles and equipment. Their versatile design and functionality make them an essential component in various applications. Here are the key benefits that cardan shafts provide for different types of vehicles and equipment:

1. Efficient Power Transmission:

– Cardan shafts ensure efficient power transmission from the engine or power source to the wheels or driven components. In vehicles, such as cars, trucks, and buses, cardan shafts transmit torque from the gearbox or transmission to the differential, enabling the wheels to rotate and propel the vehicle forward. In equipment and machinery, cardan shafts transfer rotational power from the power source, such as an engine or motor, to driven components like pumps, conveyors, or generators. By efficiently transmitting power, cardan shafts contribute to the overall performance and productivity of vehicles and equipment.

2. Flexibility and Misalignment Compensation:

– Cardan shafts offer flexibility and the ability to compensate for misalignment between the driving and driven components. This flexibility is crucial in vehicles and equipment where the engine or power source may not be directly aligned with the wheels or driven machinery. Cardan shafts incorporate universal joints at each end, allowing for angular misalignment and accommodating variations in the relative positions of the components. This feature ensures smooth power transmission, reduces stress on the drivetrain, and enhances the overall maneuverability and performance of vehicles and equipment.

3. Adaptability to Variable Configurations:

– Cardan shafts are adaptable to variable configurations and adjustable setups. In vehicles, they can accommodate changes in the wheelbase or suspension system, allowing for different vehicle sizes and configurations. For example, in trucks with multiple axles, cardan shafts can be adjusted to compensate for varying distances between the axles. In equipment and machinery, cardan shafts can be designed with telescopic sections or sliding splines, enabling length adjustment to accommodate changes in the distance between the power source and driven components. This adaptability makes cardan shafts suitable for a wide range of vehicle and equipment configurations.

4. Vibration Damping and Smooth Operation:

– Cardan shafts contribute to vibration damping and enable smooth operation in vehicles and equipment. The universal joints in cardan shafts help absorb and dampen vibrations that may arise from the power source or drivetrain. By allowing slight angular deflection and compensating for misalignment, cardan shafts reduce the transmission of vibrations to the vehicle or equipment, resulting in a smoother and more comfortable ride for passengers or operators. Additionally, the balanced design of cardan shafts minimizes vibration-induced wear and extends the lifespan of associated components.

5. Safety and Protection:

– Cardan shafts incorporate safety features to ensure the protection of both the vehicle or equipment and the operator. For example, in vehicles, cardan shafts often have shielding or guards to prevent contact with rotating components, reducing the risk of accidents or injuries. In some applications, cardan shafts may also include safety mechanisms such as shear pins or torque limiters. These features are designed to protect the shaft and other components from damage by shearing or disengaging in the event of overload or excessive torque, preventing costly repairs and downtime.

6. Suitable for Various Applications:

– Cardan shafts find applications in a wide range of vehicles and equipment across different industries. In the automotive sector, they are used in passenger cars, commercial vehicles, buses, and off-road vehicles to transmit power to the wheels. In the agricultural industry, cardan shafts connect tractors to various implements, such as mowers, balers, or tillers. In the construction and mining sectors, they are employed in machinery like excavators, loaders, and crushers to transfer power to different components. The versatility of cardan shafts makes them well-suited for various applications, providing reliable power transmission and motion.

In summary, cardan shafts offer several benefits for different types of vehicles and equipment. They ensure efficient power transmission, flexibility, and misalignment compensation, adaptability to variable configurations, vibration damping, and smooth operation. Additionally, they incorporate safety features and are suitable for a wide range of applications in automotive, agricultural, construction, and other industries. Cardan shafts play a vital role in enhancing the performance, maneuverability, and safety of vehicles and equipment, contributing to overall productivity and reliability.

China wholesaler CZPT SWC-CH Type Cardan Drive Shaft for Rolling Mill  China wholesaler CZPT SWC-CH Type Cardan Drive Shaft for Rolling Mill
editor by CX 2024-04-04